
Package: GACFF (via r-universe)
September 13, 2024

Type Package

Title Genetic Similarity in User-Based Collaborative Filtering

Version 1.0

Date 2019-12-08

Depends R (>= 3.0.0), graphics, stats, utils

Encoding UTF-8

Author Farimah Houshmand Nanehkaran, Seyed Mohammad Reza Lajevardi

<R.Lajevardi@iaukashan.ac.ir>, Mahmoud Mahlouji Bidgholi

<m.mahlouji@iaukashan.ac.ir>

Maintainer Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

Description The genetic algorithm can be used directly to find the
similarity of users and more effectively to increase the
efficiency of the collaborative filtering method. By
identifying the nearest neighbors to the active user, before
the genetic algorithm, and by identifying suitable starting
points, an effective method for user-based collaborative
filtering method has been developed. This package uses an
optimization algorithm (continuous genetic algorithm) to
directly find the optimal similarities between active users
(users for whom current recommendations are made) and others.
First, by determining the nearest neighbor and their number,
the number of genes in a chromosome is determined. Each gene
represents the neighbor's similarity to the active user. By
estimating the starting points of the genetic algorithm, it
quickly converges to the optimal solutions. The positive point
is the independence of the genetic algorithm on the number of
data that for big data is an effective help in solving the
problem.

License GPL (>= 2)

RoxygenNote 7.0.1

NeedsCompilation no

Date/Publication 2019-12-20 13:50:11 UTC

1

2 GACFF-package

Repository https://hoshmandcomputer.r-universe.dev

RemoteUrl https://github.com/cran/GACFF

RemoteRef HEAD

RemoteSha 535335531dbe81143abde9b857f5596820ae0ca8

Contents
GACFF-package . 2
Genetic . 4
ItemSelect . 7
meanR.Results . 8
NewKNN . 9
Pearson . 11
plotResults . 12
Prediction . 13
Results . 14
Similarity_Pearson . 16

Index 17

GACFF-package Genetic Similarity in User-Based Collaborative Filtering

Description

The genetic algorithm can be used directly to find the similarity of users and more effectively to
increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to
the active user, before the genetic algorithm, and by identifying suitable starting points, an effective
method for user-based collaborative filtering method has been developed. This package uses an op-
timization algorithm (continuous genetic algorithm) to directly find the optimal similarities between
active users (users for whom current recommendations are made) and others. First, by determining
the nearest neighbor and their number, the number of genes in a chromosome is determined. Each
gene represents the neighbor’s similarity to the active user. By estimating the starting points of the
genetic algorithm, it quickly converges to the optimal solutions. The positive point is the indepen-
dence of the genetic algorithm on the number of data that for big data is an effective help in solving
the problem.

Details

The DESCRIPTION file:

Package: GACFF
Type: Package
Title: Genetic Similarity in User-Based Collaborative Filtering
Version: 1.0
Date: 2019-12-08

GACFF-package 3

Depends: R (>= 3.0.0), graphics, stats, utils
Encoding: UTF-8
Author: Farimah Houshmand Nanehkaran, Seyed Mohammad Reza Lajevardi <R.Lajevardi@iaukashan.ac.ir>, Mahmoud Mahlouji Bidgholi <m.mahlouji@iaukashan.ac.ir>
Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>
Description: The genetic algorithm can be used directly to find the similarity of users and more effectively to increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to the active user, before the genetic algorithm, and by identifying suitable starting points, an effective method for user-based collaborative filtering method has been developed. This package uses an optimization algorithm (continuous genetic algorithm) to directly find the optimal similarities between active users (users for whom current recommendations are made) and others. First, by determining the nearest neighbor and their number, the number of genes in a chromosome is determined. Each gene represents the neighbor’s similarity to the active user. By estimating the starting points of the genetic algorithm, it quickly converges to the optimal solutions. The positive point is the independence of the genetic algorithm on the number of data that for big data is an effective help in solving the problem.
License: GPL (>= 2)
RoxygenNote: 7.0.1

Index of help topics:

GACFF-package Genetic Similarity in User-Based Collaborative
Filtering

Genetic The genetic algorithm for finding similarities
between users.

ItemSelect A set of Items id for recommending to an active
user.

NewKNN Nearest Neighbors.
Pearson Pearson method
Prediction prediction function
Results Results of all active users.
Similarity_Pearson Similarity between users in Pearson method.
meanR.Results Average of results for all active users.
plotResults Methods for Results objects.

Genetic-based recommender systems.

Finding the Nearest Neighbors and Using Them in the Genetic-Based Collaborative Filtering Rec-
ommender System.

Author(s)

Farimah Houshmand Nanehkaran, Seyed Mohammad Reza Lajevardi <R.Lajevardi@iaukashan.ac.ir>,
Mahmoud Mahlouji Bidgholi <m.mahlouji@iaukashan.ac.ir>

Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

References

Bobadilla, J., Ortega, F., Hernando, A. and Alcalá, J. (2011). Improving collaborative filtering
recommender system results and performance using genetic algorithms. Knowledge-based systems,
vol. 24, no. 8, pp. 1310-1316.

Ben-Shimon, D., Rokach, L. and Shapira, B. (2016). An ensemble method for top-N recommenda-
tions from the SVD. Expert Systems with Applications, vol. 64, pp.84-92.

Kang, Z., Peng, C. and Cheng, Q. (2016). Top-n recommender system via matrix completion. In
Thirtieth AAAI Conference on Artificial Intelligence.

Qian, Y., Zhang, Y., Ma, X., Yu, H. and Peng, L. (2019). EARS: Emotion-aware recommender
system based on hybrid information fusion. Information Fusion, vol. 46, pp.141-146.

Xia, B., Li, T., Li, Q. and Zhang, H. (2018). Noise-tolerance matrix completion for location recom-
mendation. Data Mining and Knowledge Discovery, vol. 32, no. 1, pp.1-24.

4 Genetic

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

active_users <- c(1:dim(ratings)[2])
##1
sim.Pearson <- Similarity_Pearson (ratings, active_user=6,

near_user=c(1:dim(ratings)[2]))
##2
Pearson.out <- Pearson (ratings, active_user=6, Threshold_KNN=4)
##3
predict <-Prediction (ratings, active_user=6,

near_user=Pearson.out$near_user_Pearson,
sim_x=Pearson.out$sim_Pearson,
KNN=length(Pearson.out$sim_Pearson))

##4
ItemSelect (ratings, active_user=6, pre_x=predict)
##5
NewKNN.out <- NewKNN (ratings, active_user=6, Threshold_KNN=4,

max_scour=5, min_scour=1)
##6
Genetic.out <- Genetic (ratings, active_user=6,

near_user=NewKNN.out$near_user,
Threshold_KNN=4, max_scour=5, min_scour=1,
PopSize=100, MaxIteration=50, CrossPercent=70,
MutatPercent=20)

##7
Results.out <- Results(ratings, active_users, Threshold_KNN=4, max_scour=5,

min_scour=1, PopSize=100, MaxIteration=50,
CrossPercent=70, MutatPercent=20)

##8
meanR.Results.out <- meanR.Results (obj_Results=Results.out)
##9
plotResults(active_users, Results.out, xlab = "Iteration", ylab = "MAE",

main = "MAE (New KNN+GA) in CF Recommender Systems")

Genetic The genetic algorithm for finding similarities between users.

Description

Finding users’ similarity by continuous genetic algorithm directly.

Usage

Genetic(ratings, active_user, near_user, Threshold_KNN, max_scour, min_scour,
PopSize=100, MaxIteration=50, CrossPercent=70, MutatPercent=20)

Genetic 5

Arguments

ratings A rating matrix whose rows are items and columns are users.

active_user The id of an active user as an integer greater than zero (for example active_user<-
6).

near_user The number of neighbor users that obtained from "NewKNN" for the active user.

Threshold_KNN Maximum number of neighbors.

max_scour The maximum range of ratings.

min_scour The minimum range of ratings.

PopSize Population size (Number of chromosomes) in Genetic algorithm.

MaxIteration Number of iterations in Genetic algorithm.

CrossPercent Percentage of the Genetic algorithm population that participates in the Single-
point crossover operator to generate new offspring.

MutatPercent Percentage of the Genetic algorithm population that participates in the muta-
tion.

Details

The fitness function of the genetic algorithm determines the optimality of the neighbor’s similarity
to the active user. The fitness function is considered the MAE of the RS. The MAE is obtained by
comparing the real ratings of users with the predicted ratings that are calculated according to the
similarity obtained by the Genetic algorithm.

The steps of the Genetic algorithm are:

Selection. Selection is based on elitism. Using this operator, the best member of each population
survives and will be present in the next population. In other words, the member with the highest
match will automatically be transferred to the new population (elitist selection = 10% of the
best individuals from each generation). The application of elitism in the genetic algorithm usually
improves its efficiency.

Crossover. Single-point crossover technique is used. The crossover operator is used to produce
children. A weight coefficient (crossover probability) of between 0 and 1 (0.8) is considered equal
to the length of the parent, and by using follow formulas, two new chromosomes or two children
are created.

y1 = α ∗ x1 + (1− α) ∗ x2

y2 = α ∗ x2 + (1− α) ∗ x1

x1 and x2 are decimal values that represent the parent chromosome. α is the weighting factor and,
y1 and y2 are the children’s chromosomes resulting from the parent compound.

Mutation. Single-point mutation technique is used to introduce diversity. The mutation probability
is 0.02. The Gaussian mutation operator is implemented. First, a chromosome is randomly selected
from the population, and then one or more of its components is changed according to the Gaussian
function using follow formula.

y1 = x1 + r1 ∗N(0, 1)

6 Genetic

x1 is the similarity value that represents the parent chromosome, r1 is a random number in the
range of 0 and 1 (0.02). N(0,1) is a random number distributed by using the Gaussian distribution.

The genetic algorithm stops when an individual in the population has a fitness value less than a
constant value (for example 0.5).

Value

An object of class "Genetic", a list with components:

call The call used.

sim_GA Similarity obtained from the Genetic algorithm as much as the number of
neighbors.

pre_GA Predicted active user ratings for all items.

item_GA A set of best-predicted items for the active user.

save_MAE_GA A set of MAEs obtained from each iteration of the Genetic algorithm.

time_Genetic The elapsed time of Genetic algorithm.

Author(s)

Farimah Houshmand Nanehkaran

Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

References

Bobadilla, J., Ortega, F., Hernando, A. and Alcala, J. (2011). Improving collaborative filtering
recommender system results and performance using genetic algorithms. Knowledge-based systems,
vol. 24, no. 8, pp. 1310-1316.

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

NewKNN.out <- NewKNN (ratings, active_user=6, Threshold_KNN=4,
max_scour=5, min_scour=1)

Genetic.out <- Genetic (ratings, active_user=6,
near_user=NewKNN.out$near_user,
Threshold_KNN=4, max_scour=5, min_scour=1,
PopSize=100, MaxIteration=50, CrossPercent=70,
MutatPercent=20)

ItemSelect 7

ItemSelect A set of Items id for recommending to an active user.

Description

Selecting the best items to recommend.

Usage

ItemSelect(ratings, active_user, pre_x)

Arguments

ratings A rating matrix whose rows are items and columns are users.
active_user The id of an active user as an integer greater than zero (for example active_user<-

6).
pre_x A set of predicted ratings for all items not rated by the active user.

Details

Items selecting and their order depends on the method (Pearson, NewKNN, Genetic).

Value

item_x A set of item identifiers recommended to the active user.

References

Nilashi, M., Ibrahim, O. and Bagherifard, K. (2018). A recommender system based on collaborative
filtering using ontology and dimensionality reduction techniques. Expert Systems with Applica-
tions, vol. 92, pp. 507-520.

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

Pearson.out <- Pearson (ratings, active_user=6, Threshold_KNN=4)

predict <-Prediction (ratings, active_user=6,
near_user=Pearson.out$near_user_Pearson,
sim_x=Pearson.out$sim_Pearson,
KNN=length(Pearson.out$sim_Pearson))

ItemSelect (ratings, active_user=6, pre_x=predict)

8 meanR.Results

meanR.Results Average of results for all active users.

Description

Average of MAE and elapsed time for all active users.

Usage

meanR.Results(obj_Results)

Arguments

obj_Results An object of class "Results".

Details

Due to the difference in the results of each active user, the average of all active users is calculated.

Value

An object of class "meanR.Results", a list with components:

call The call used.
mean_MAE_Pearson

Average of MAE obtained from the "Pearson" method for all active users.
mean_MAE_NewKNN

Average of MAE obtained from the "NewKNN" method for all active users.
mean_MAE_Genetic

Average of MAE obtained from the "Genetic" method for all active users.
diff_MAE_GA_Pearson

The difference of MAE in the "Pearson" method and "Genetic" algorithm.
mean_Time_Pearson

Average of the elapsed time of the "Pearson" method for all active users.
mean_Time_NewKNN

Average of the elapsed time of the "NewKNN" method for all active users.

mean_Time_GA Average of the elapsed time of the "Genetic" method for all active users.

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

NewKNN 9

active_users <- c(1:dim(ratings)[2])

Results.out <- Results(ratings, active_users, Threshold_KNN=4, max_scour=5,
min_scour=1, PopSize=100, MaxIteration=50,
CrossPercent=70, MutatPercent=20)

meanR.Results.out <- meanR.Results (obj_Results=Results.out)

NewKNN Nearest Neighbors.

Description

Determining of nearest neighbors and their id to determine the number of genes in a chromosome.

Usage

NewKNN(ratings, active_user, Threshold_KNN, max_scour, min_scour)

Arguments

ratings A rating matrix whose rows are items and columns are users.

active_user The id of an active user as an integer greater than zero (for example active_user<-
6).

Threshold_KNN Maximum number of neighbors.

max_scour The maximum range of ratings.

min_scour The minimum range of ratings.

Details

The number of neighbors for the active user determines the number of genes in the chromosome of
the genetic algorithm. The fitness function is MAE which by being minimized, the similarity of the
neighbor users is optimized within the processes of the genetic algorithm. The following equation is
used to determine the starting points of the genetic algorithm, which are essentially approximation
similarities. Using these starting points, the genetic algorithm converges faster.

simdif = (maxrating − dif)/sum(ratings)

rangeofdif : [minrating − 1, . . . ,maxrating − 1]

dif is the difference in the existing ratings. For example, for a difference of 0.5, the approximate
similarity is 4.5/15 and for a difference of 0, the similarity is 5/15. In this method, the number of
neighbors varies for each active user, so the problem of predetermining it is solved.

The steps of this function are:

1) The rating matrix is assigned to the form of the Item-user matrix (Items in rows and users in one
column).

10 NewKNN

2) The users rating differences of each item are calculated for each pair of related users.

3) For each user, the related pairwise are separated from all rows in one column.

4) If a pairwise is repeated several times, the average values of the differences are calculated. The
number of neighbor users is different for each active user.

5) The rating differences are sorted in ascending order.

6) Neighbor users are selected based on lower rating differences. If the threshold for the difference
is already specified, the out-of-area relationships are eliminated.

Value

An object of class "NewKNN", a list with components:

call The call used.

sim_NewKNN The similarities between near users and the active user that have obtained from
the "NewKNN" method.

pre_NewKNN The predicted ratings for the active user by the NewKNN method.

item_NewKNN A set of recommended items id, obtained from the NewKNN method.

near_user Neighbors of the active user by the NewKNN method orderly.

time_NewKNN The elapsed time in NewKNN method.

Author(s)

Farimah Houshmand Nanehkaran

Maintainer: Farimah Houshmand Nanehkaran <hoshmandcomputer@gmail.com>

References

Koohi, H. and Kiani, K. (2017). A new method to find neighbor users that improves the performance
of Collaborative Filtering. Expert Systems with Applications, vol. 83, pp.30-39.

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

NewKNN.out <- NewKNN (ratings, active_user=6, Threshold_KNN=4,
max_scour=5, min_scour=1)

Pearson 11

Pearson Pearson method

Description

The Pearson method is the most well-known method for finding users’ similarity, so to compare the
genetic-based method, the Pearson method has been implemented in this package.

Usage

Pearson(ratings, active_user, Threshold_KNN)

Arguments

ratings A rating matrix whose rows are items and columns are users.

active_user The id of an active user as an integer greater than zero (for example active_user<-
6).

Threshold_KNN Maximum number of neighbor users.

Details

Pearson Correlation Coefficient (PCC) is the similarity measure for Collaborative filtering recom-
mender system, to evaluate how much two users are correlated [3].

Value

An object of class "Pearson", a list with components:

call The call used.

sim_Pearson The similarity of the Pearson method.

pre_Pearson The prediction of the Pearson method.

item_Pearson A list of recommended items by the Pearson method.
near_user_Pearson

Neighbors of active user in the Pearson method orderly.

time_Pearson The elapsed time of the Pearson method.

References

[1] Bobadilla, J., Ortega, F., Hernando, A. and Alcala, J. (2011). Improving collaborative filtering
recommender system results and performance using genetic algorithms. Knowledge-based systems,
vol. 24, no. 8, pp. 1310-1316.

[2] Lu, J., Wu, D., Mao, M., Wang W. and Zhang, G. (2015). Recommender system application
developments: a survey. Decision Support Systems, vol. 74, pp. 12-32.

[3] Sheugh, L. and Alizadeh, S.H. (2015). A note on pearson correlation coefficient as a metric of
similarity in recommender system. In 2015 AI & Robotics (IRANOPEN) (pp. 1-6). IEEE.

12 plotResults

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

Pearson.out <- Pearson (ratings, active_user=6, Threshold_KNN=4)

plotResults Methods for Results objects.

Description

Provide standard methods for manipulating Results objects.

Usage

plotResults (active_users, obj_Results,
xlab = "Iteration", ylab = "MAE",

main = "MAE (New KNN+GA) in CF Recommender Systems", ...)

Arguments

active_users A vector of all active users id.

obj_Results An object of class "Results".

xlab, ylab, main Graphics parameters.

... Additional arguments passed on to the method.

Details

Methods for standard generic functions when dealing with objects of class "Results"

Value

a plot of the history of the process is produced with a NULL return value.

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

active_users <- c(1:dim(ratings)[2])

Prediction 13

Results.out <- Results(ratings, active_users, Threshold_KNN=4, max_scour=5,
min_scour=1, PopSize=100, MaxIteration=50,
CrossPercent=70, MutatPercent=20)

plotResults(active_users, Results.out, xlab = "Iteration", ylab = "MAE",
main = "MAE (New KNN+GA) in CF Recommender Systems")

Prediction prediction function

Description

Obtaining the ratings of items that not seen by the active user.

Usage

Prediction (ratings, active_user, near_user, sim_x, KNN)

Arguments

ratings A rating matrix whose rows are items and columns are users.

active_user The id of an active user as an integer greater than zero (for example active_user<-
6).

near_user Neighbor users.

sim_x Similarity of neighbor users obtained from Similarity function.

KNN The number of neighbor users that obtained for the active user from function or
manually.

Details

The prediction formula is:

(px)
i = r̄x+((

∑
(

n ∈ nearusers)([sim(ux, un).((rn)
i−(r̄)n)]))/(

∑
(

n ∈ nearusers)(|sim(ux, un)|)))

where (Px)
i is the prediction of the user x to an item i. (r̄)x is the average ratings of the user x and

r̄n is the average ratings of neighbors.

Value

pre_y A set of predicted ratings for all items of the active user.

14 Results

References

Moses, J.S. and Babu, L.D. (2018). Evaluating Prediction Accuracy, Developmental Challenges,
and Issues of Recommender Systems. International Journal of Web Portals (IJWP), vol. 10, no. 2,
pp. 61-79.

Singh, P., Ahuja, S. and Jain, S. (2019). Latest Trends in Recommender Systems 2017. In Advances
in Data and Information Sciences, pp. 197-210. Springer, Singapore.

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

Pearson.out <- Pearson (ratings, active_user=6, Threshold_KNN=4)

predict <- Prediction (ratings, active_user=6,
near_user=Pearson.out$near_user_Pearson,
sim_x=Pearson.out$sim_Pearson,
KNN=length(Pearson.out$sim_Pearson))

Results Results of all active users.

Description

comparison of three methods (Genetic, NewKNN, Pearson) about MAE, elapsed time and predicted
items.

Usage

Results(ratings, active_users, Threshold_KNN, max_scour, min_scour,
PopSize=100, MaxIteration=50, CrossPercent=70, MutatPercent=20)

Arguments

ratings A rating matrix whose rows are items and columns are users.

active_users A vector of all active users id.

Threshold_KNN Maximum number of neighbors.

max_scour The maximum range of ratings.

min_scour The minimum range of ratings.

PopSize Population size (Number of chromosomes) in Genetic algorithm.

MaxIteration Number of iterations in Genetic algorithm.

Results 15

CrossPercent Percentage of the Genetic algorithm population that participates in the Single-
point crossover operator to generate new offspring.

MutatPercent Percentage of the Genetic algorithm population that participates in the muta-
tion.

Details

MAE is the average of the difference between real ratings of the active user and predicted ratings
obtained from a method.

Value

An object of class "Results", a list with components:

call The call used.
MAE_Pearson MAE obtained from the "Pearson" method.
MAE_NewKNN MAE obtained from the "NewKNN" method.
MAE_Genetic MAE obtained from the "Genetic" method.
MAE_GA A vector of MAE in every "Genetic" iteration.
time_Pearson Elapsed time of the "Pearson" method.
time_NewKNN Elapsed time of the "NewKNN" method.
time_Genetic Elapsed time of the "Genetic" method.

Note

MAE is abbreviate of Mean Absolute Error.

References

Salehi, M. (2014). Latent feature based recommender system for learning materials using genetic
algorithm. Information Systems & Telecommunication, vol. 137.

See Also

Genetic, NewKNN, Pearson.

Examples

ratings<-matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

active_users <- c(1:dim(ratings)[2])

Results.out <- Results(ratings, active_users, Threshold_KNN=4, max_scour=5,
min_scour=1, PopSize=100, MaxIteration=50,
CrossPercent=70, MutatPercent=20)

16 Similarity_Pearson

Similarity_Pearson Similarity between users in Pearson method.

Description

Finding the similarity with Pearson’s method.

Usage

Similarity_Pearson(ratings, active_user, near_user)

Arguments

ratings A rating matrix whose rows are items and columns are users.

active_user The id of an active user as an integer greater than zero (for example active_user<-
6).

near_user A vector of neighbor users that in the Pearson method are all users.

Details

Obtaining the Pearson similarity through the cor command from state package does not produce the
desired response.

Value

sim_ac Pearson’s similarity between the active user and all users.

References

Karabadji, N.E.I., Beldjoudi, S., Seridi, H., Aridhi, S. and Dhifli, W. (2018). Improving memory-
based user collaborative filtering with evolutionary multi-objective optimization. Expert Systems
with Applications, vol. 98, pp.153-165.

Examples

ratings <- matrix(c(2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,

4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,

NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)

sim.Pearson <- Similarity_Pearson (ratings, active_user=6,
near_user=c(1:dim(ratings)[2]))

Index

∗ Optimize
GACFF-package, 2
Genetic, 4

GACFF-package, 2
Genetic, 4, 15

ItemSelect, 7

meanR.Results, 8

NewKNN, 9, 15

Pearson, 11, 15
plotResults, 12
Prediction, 13

Results, 14

Similarity_Pearson, 16

17

	GACFF-package
	Genetic
	ItemSelect
	meanR.Results
	NewKNN
	Pearson
	plotResults
	Prediction
	Results
	Similarity_Pearson
	Index

